
SHOCK WAVE-TURBULENT BOUNDARY LAYER 
INTERACTIONS LN TRANSONIC FLOW': 

T. C. Adamson, Jr .  and  A.F.  Messiter 
The  University of Michigan 

SUMMARY 

The  method of matched  asymptotic  expansions is  used  in  analyzing  the 
s t ruc ture  of the  interaction  region  formed  when a shock  wave  impinges  on a 
turbulent  flat  plate  boundary  layer  in  transonic  flow.  Solutions  in  outer re- 
gions,  governed by inviscid  flow  equations,  lead  to  relations  for  the  wall 
pressure  distribution.  Solutions  in  the  inner  regions,   governed  by  equations 
in   which  Reynolds   and/or   viscous  s t resses   are   included,   lead to a relation  for 
the  wall   shear  stress.   Solutions  for  the  wall   pressure  distribution  are  review- 
ed  for  both  oblique  and  normal  incoming  shock  waves.  Solutions  for  the  wall 
shea r   s t r e s s   a r e   d i scussed .  

SYMBOLS 

crit ical   velocity of sound,   cm/sec   ( f t / sec)  

distance  from  leading  edge of flat  plate  to  shock  impingement  point, 
cm  ( in)  

Mach  number 

pressure,   d imensionless   with  cr i t ical   pressure  in   external   f low 

Reynolds  number  based  on  critical  conditions  in  external  flow  and L 

dimensionless  velocity  components  in  the X ,  Y directions,   equations 

- 

(5a,  5b) 

velocity  perturbations 

var iable   par t  of dimensionless  velocity  in  velocity  defect  layer  in  the 
undisturbed  boundary  layer.  

dimensionless  fr iction  velocity,   equation  (IC) 

dimensionless  coordinates;  Y = Y / L , '  X = ( r - x ) / r  " 
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stretched  coordinates 

inverse  of KQrmSn  constant cy = (0.41) 

angle  made  by  shock  wave  with  the  vertical 

constant of order   one 

rat io  of specific  heats,   Cp/Cv 

o r d e r  of thickness of undisturbed  boundary  layer  at  shock  impinge- 
ment  point,  dimensionless  with 

distance  from  wall  to  sonic  line  in  undisturbed  flow,  dimensionless 

-1 

with ; 6, = 6 e-@O/Q e-€  /OUT 
-7 

orde r  of extent of outer  inviscid  flow  region  in X direction,  dimen- 
sionless  with x; A = ( y t   1 ) l l 2  6 

o r d e r  of extent of inner  inviscid  flow  region  in X direction,  dimen- 
sionless  with ; A, = 6, *P u T 1 / 2  

p a r a m e t e r ,  E = U - 1 

wal l   shear   s t ress ,   d imensionless   with  undis turbed flow wall   shear 
s t r e s  s at  shock  impingement  point 

e 

Subscripts 

e external  

W wall 

U ups t ream of interaction,  in  undisturbed  flow 

INTRODUCTION 

Shock  wave-boundary  layer  interaction is an  important  problem  in  both 
external  and  internal  flows.  At  transonic  speeds,  asymptotic  methods  have 
proven  successful  in  dealing  with  the  problem  when  the  boundary  layer is 
laminar   ( refs .  1 , Z )  a n d   a r e  now being  used  in  analyzing  the  interaction  region 
in  turbulent  boundary  layers.  In genera l ,   these   ana lyses   a re   based   on  two 
pa rame te r s ,  E and u , where E measures  the  difference  between  the  flow 
velocity  and  the  critical  sonic  velocity  in  the  flow  external  to  the  boundary 
layer ,   and  where uT is  a dimensionless  fr iction  velocity  which  measures  the 
change  in  velocity  in  the  velocity  defect  region of the  undisturbed  boundary 
layer .   Thus,  i f  overbars  denote  dimensional  quantit ies 

T 

ue = v  /”,* = 1 t E ; M e = l t  N E  t . . .  
e 2 
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For  transonic  f low,  then E << 1 , and u is  defined  such  that  for  Re >> 1 ,  
uT << 1,   and  the  var ious  problems  considerea  may  be  character ized by  the 
relat ive  orders  of E and  uT.  The  first  work  done  on  the  turbulent  boundary 
layer  problem  was  done  by  Adamson  and  Feo (ref. 3 )  who considered  the  case 
where  the  impinging  shock is weak (u: << E << uT)  and  oblique,  and  Melnik  and 
Grossman  ( re f .  4 ) who considered  the  case  where  the  shock is  s t ronger  (E = 
O(uT) ) and  normal.   In  both  papers,  i t  was  concluded  that  in  order  for  the  in- 
teraction  to  cause  separation, it was  necessary  that  E = O(1).   As a f i r s t   s t ep  
in  this  direction,  the  condition E >> uT  was  discussed  for  the  oblique  wave  case 
by  Adamson  (ref. 5) and  for  the  normal  wave  case by  Adamson  and  Messiter 
(ref. 6) .  In each of these  papers  it   was  pointed  out,,  first,  that  the  problem 
could  be  divided  into two parts  consisting of the  flow  structure  in  the  outer  in- 
viscid  flow  regions  and  that  in  the  inner  near  wall  regions  where  Reynolds  and 
viscous  stresses  had  to  be  taken  into  consideration,  and,  second,  that   the  wall  
pressure  distribution  could  be  derived  from  solutions  in  the  inviscid flow r e -  
gions , without  having  to  find  solutions  in  the  near  wall  regions. In each   case ,  
attention  was  focused  on  the  inviscid  flow  regions  for  near  separation  condi- 
tions. 

The  present  paper is concerned  with two objectives. First, it i s  desired 
to  complete  the  picture of the  shock  structure  in  the  oblique  wave  case,   only 
the  outer  part  of this  structure  having  been  given  in  reference 5,  and  to  show 
the  form of the  pressure  dis t r ibut ion  inferred  f rom  such a structure.   Second, 
it is desired  to   compare  this   s t ructure   and  pressure  dis t r ibut ion  with  their  
counterpar ts   in   the  normal   wave  case,   and  discuss   br ief ly   the  effects  of the 
very  different  pressure  distributions on  the  conditions  for  incipient  separation. 
The  presentation  is   aided by a brief  review of the  s t ructure  of the  interaction 
region  in  the  normal  wave  case,   and  this i s  given  in  the  next  section.  It  should 
be  noted  that   in  the  following,  parameters  are  defined  such  that  6 = uT, and 
that  the  asymptotic  relationship  between  uT  and  Re is uT = bo (a In Re)-1 + . - , 
where  for  y = 1.4,  bo = 0.94. 

STRUCTURE O F  THE  INTERACTION REGION - NORMAL SHOCK 

The  s t ructure  of the  interaction  region  for  the  impinging  normal  shock 
case  i s  sketched  in  f igure  1.  It should  be  noted  that  the  sketch is  not  to  scale,  
and  that   there   are  two near  wall   regions,   the  so-called  Reynolds stress sub- 
layer  region  and  the  wall   region  (ref.  6) .  

As  seen  in  f igure 1 ,  t he re  a re  two inviscid  flow  regions.  The  outer re- 
gion is  scaled by the  thickness of the  boundary  layer, 6 ,  in  the Y direction  and 
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by  the  order of the extent of the  overal l   in teract ion.region,  A ,  in  the X d i rec-  
tion.  To  this  scale,  one sees a normal  shock  penetrating  the  boundary  layer,  
represented  by  the  velocity  defect  region.  In  the  inner  inviscid  flow  region, 
scaled  by 6, and A, in the Y and X direct ions,   respect ively,  (6, is the  order  
of the  distance  from  the  wall   to  the  sonic  l ine  in  the  undisturbed  f low)  the  cp- 
stream  influence of the  interaction,  manifested  by a deceleration of the  fluid, 
causes  compression  waves  emanating  from  the  sonic  l ine  to  coalesce  and  form 
a shock way.   This   shock  wave  becomes  more  and  more  near ly   normal ,   and 
as  Y / 6 ,  = yl’ -+ 00, connects  with  the  shock  wave  seen  in  the  outer  inviscid  flow 
region. 

The  wall   pressure  distribution is found in  the  l imit   as  the  appropriate Y 
variable (i. e.  , in  ei ther  the  inner  or  outer  inviscid  region)  goes to zero.  The 
solution  valid  everywhere  in  the  interaction  region  except  at  the  inception of 
the  interact ion,   where  waves  are   coalescing  and  the  wal l   pressure  f i rs t   begins  
to  r ise  from  i ts   undisturbed  value,is  

x = X / ( y + l )  E 
1 / 2   1 / 2  

U 
7 

Since  the  asymptot ic   form  for   uol   (y)   as  y 4 0  i s   uo l  - crlny t Po,  one  can  show 
that as  x “ 0 ,  P, reduces  to 

Pw = 1 + Y E  - uT 2 y  cuBn x t - . -  x << 1 (3 1 

A typical  wall  pressure  distribution  is  shown  in  figure 2 ,  for E = 0.  167 
(Me = 1.20)  and uT = 0. 028 (Re = 10 6 ), using  Coles’ fo rm (ref .  7 )  for   uo l ,  

CY 
u = a, Bny - - (1 + cosrry)  Y < 1  (4a 1 01 2 

= o  Y ’1  (4b 

The  important  points  to  note  are  that   there  are  two  inviscid flow regions,  
with  upstream  influence  existing  only  in  the  inner  region  which  is  exponentially 
small  compared  to  the  outer  region (i. e.  , calculate 6.,*/6 and A./A) and  that 
the  wall   pressure  increases  monotonically.   This  point  is   borne  out,   for  exam- 
ple ,  by  the  experimental  measurements  for  flow  in  tubes  described  in  refer- 
ence 8. 

1. 

STRUCTURE O F  THE  INTERACTION  REGION - OBLIQUE SHOCK 

The  shock  wave  structure  for  the  oblique  shock  wave  case  is  sketched  in 
f igure 3 .  Again,   i t   i s   important  to  note  that   this  sketch  is   not  to  scale,   and 
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I 

that   the  shock  occurs  in  regions  in  which  the  governing  equations  are  those 
for  inviscid,   rotational flow.  Viscous  and  Reynolds  stresses  must  be  taken 
into  account  in  the  Reynolds  stress  sublayer  region  and  wall  region  which  exist 
between  the  inviscid  flow  region  and  the  wall. 

A s  seen  in  f igure 3 , the  oblique  shock  structure  has  many of the  features 
of the  normal  shock  structure  deep  in  the  boundary  layer,   with a more  compli-  
cated  outer  structure.  The  analysis  pro'ceeds by consider ing  f i rs t ,   the   region 
far  from  the  wall,  and  then  proceeding  toward  the  wall.  In this regard,   the  
upstream  influence  from  the  interaction  region is confined  to a very  thin re- 
gion,  just   as  in  the  normal  shock  case.   Thus,   in  analyzing  the  regions  outside 
the  inner  inviscid  region,  one  need  not  consider  any  waves  arising  from  lower 
regions  and  affecting  the  incoming  shock  shape.  Instead,  as  mentioned  in 
reference  5,  the  incoming  oblique  wave  shape  may  be  found  by  considering a 
wave of known s t r eng th   a s  it penetrates a shear   l ayer   represented  by  the 
boundary  layer.  Thus , i f  one  writes  the  expansions  for  the  velocity  compo- 
nents   as  - 

U 

e 
U = - " = l t E + u  u t E u l t . - .   = l t E u t . - .  

T 01 (5a)  

where u1 i s  the  perturbation  due  to  the  shock,  and i f  the  local  angle  made  by 
the  shock  with  the  vertical, (3 , i s  expanded a s  follows , 

S 

p s  = & 2 p  4- . . . ( 6 )  

Then,  using  the  shock-wave  relations,  one  can  show  that p and  uu=  l tu,uol/E , 
the  value of u ups t ream of the  shock,   are   re la ted  as   fol lows  ( ref .   5) .  

where c i s  a constant.  The  value of c in  equation ( 7 )  i s   calculated by inserting 
the known value of (3 for  the  wave  in  the  flow  external  to  the  boundary  layer, 
where uu = 1. 

Unlike  the normal   shock  wave  case,  it does  not  appear  possible  to  con- 
sider  one  outer  inviscid flow region  in  which  the  whole  outer  shock  structure 
is  contained;  evidently  the  shock  structure is  too  complicated  for  this.  In- 
s tead,  a s e r i e s  of regions is  considered,  each  one  being  deeper  in  the  bound- 
ary  layer ,   and  each  one  having  smaller   and  smaller   character is t ic   lengths   in  
both  the X and Y directions.   In  an  asymptotic  sense,   each of these  regions 
corresponds to a limit process   such  that  uT * 0 with  an  intermediate   var iable  
Y / q  (u,) held  fixed  where T/U, -* 0 ,  but ~ / 6 *  +QO a s  uT + 0. To  the  scale of 
each of these  regions  the  shock  wave  structure  appears as shown  in  figure  4a, 
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that i s ,  the  solution is that  for a regular  reflection  with  the  angles  associated 
with  each of the  shock  waves  changing as   the  boundary  layer  i s  penetrated.  If 
ur  denotes  the  value of u (eq.   (5a))   downstream of the  reflected  shock  for a 
given  region,  with  given  values of p and uu, then 

and  the  corresponding  pressure i s ,  

P =  1 " E  y (-1 t u  - U r )  -I- " *  
U 

Now, in  .each  region  or  limit  process  description  the  incoming  velocity is uni- 
f o r m  to order  E .  Therefore,   the  velocity  downstream of the  reflected  wave 
and  thus  the  pressure  there  is   uniform  to  order E .  Fur thermore ,   for   any  
regions  between  the  one  in  question  and  the  wall,  with  the  same  characteristic 
X dimension,   aP/ay = 0 to   order  E ,  so  the  pressure  given  in  equation (9)  is   the  
wal l   pressure  corresponding  to   the  character is t ic  X dimension  in  question. 
Now from  equations ( 7 )  through ( 9 ) ,  one  can  show  that  dur/duu < 0 so that 
d P / d u ,  > 0. Thus,   as   one  considers   regions  deeper   and  deeper   in   the  boundary 
l aye r ,  i . e . ,  a s  Y and  in  particular X dec rease ,  the pressure  downstream  of 
the  ref lected  shock  increases .   Hence,   as   one  approaches  the  shock  a long  the 
wall ,   from  downstream of the  shock,   the   wal l   pressure  increases .  

As  successive  regions,   each  deeper  in  the  boundary  layer,   are  consider- 
ed,   the   s t ructure   shown  in   f igure  4a  is  found  until  the  limiting  conditions  for 
which a regular  reflection is possible  are  reached.  From  equation ( 8 ) ,  this   is  
seen to occur  when @ has  decreased  such  that  

2 p = 4 (Y t l )uu /5   (10 )  

As  this  condition is  reached,  the  shock  structure  evidently  takes on  the 
Guderley  Mach  stem  configuration  (ref. 9 ) .  To  the  scale of the  region  in  which 
this flow configuration is found,  the  shock  structure,  then,  is  that  seen  in 
figure 4b. T h a t   i s ,   a s  the  wall is approached,  the  incoming  shock  (Mach  stem) 
becomes a normal  shock. 

Finally,   beneath  the  Mach  stem  region is  the  inner  inviscid  region,  the 
same  region found in  the  normal  shock  wave  case,   in  which  compression  waves 
emanating  from  the  sonic  line  coalesce  to  form a shock  which  becomes  more 
and   more   near ly   normal   as   i t   moves   away  f rom  the   wal l   un t i l   i t   merges   wi th  
the  normal  shock  in  the  Mach  stem  region. 

The  wall   pressures  associated  with  the  regular  reflection  and  the  normal 
shock  problems  have  been  calculated.  Although  the  joining of these two par t s  
of the  solution  (through  the  Guderley  Mach stem region) is more  difficult ,   the 
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general  shape of the  wall  pressure  distribution  seems  clear.  Thus,  just  as  in 
the  normal  shock wave case ,   as  one  moves  downstream  toward the Mach  stem 
region  and  the  shock  becomes  stronger,  the  wall  pressure  increases. On the 
other  hand,  from  the  outer  inviscid  regions  discussed  above,  it  was shown  that 
a s  one  moves  upstream  toward  the  Mach  stem  region,  the  wall  pressure  in- 
creases  also.  Therefore,  the  wall  pressure  distribution  must,  as shown in 
figure 5, go through a maximum  in  the  Mach  stem  region,  this  maximum  pres- 
sure  being  the  pressure  behind  the  normal  part of the  wave  (Mach  stem)  shown 
in  figure 4b.  This  form  for  the  pressure  distribution is also  apparent  in  ex- 
perimental  results  as  shown, for  example,  in  reference  10. In these  experi- 
ments  the  external flow was  supersonic but since  the flow near the  wall i s  
transonic,  the  general  features of the structure of the  interaction  region shown 
here  must  apply. 

DISCUSSION 

The structure of the  shock wave in the interaction  region  is  seen to be 
much  more  complicated  in  the  oblique  shock  case (fig. 3 )  than  in  the  normal 
shock  case (fig. 1 )  and  this is   ref lected  in  the fact  that,  in  general,  solutions 
a r e  much  more  difficult to obtain  in  the  oblique  than  in the normal  shock  case. 
The  differences  in  the  wall  pressure  distributions  in  the two cases   are   i l lus-  
trated by comparing  figures 2 and 5. In-the  normal shock wave case,  the 
pressure  increases  monotonically,  while  in the oblique  shock wave case,  ‘the 
pressure  goes  through a maximum  and  decreases  then to its  final  value. Now, 
in  the  inviscid flow regions,  the  pressure  perturbation  is  directly  proportional 
to the  negative of the  perturbation  in U ,  and a s  the  wall  is  approached,  the 
solution for U is  matched  with a corresponding  solution  from  the  Reynolds 
stress  sublayer  region  which  is  in  turn  matched with a solution  in  the  wall 
region. The result  is  that  as  the  pressure  increases,  the  velocity  near  the 
wall  decreases,  such  that B U / a Y  near  the  wall  decreases  and  hence  the  wall 
shear   s t ress ,  T ~ ,  decreases.  In fact, T~ can be written  directly  in  terms of 
the  pressure  perturbations  (refs. 3 and 4).  Therefore,  in the normal-shock 
wave case,  T~ decreases  monotonically to its  lowest  value,  while  in  the oblique 
wave case,   i t  goes  through a minimum  and  rises  to  its  final  value.  This  situ- 
ation  is  expected to  hold  up  to separation,  i .   e. , for  the case of incipient 
separation.  Hence,  the  point  at  which T first  goes to zero  (incipient  separa- 
tion) will occur  within  the  interaction  region for  the  oblique  shock case,  and 
a t  the  far  downstream  limit of the  interaction  region  in  the  normal  shock  case. 
In the  event  that  separation  occurs,  the  results  discussed  above do not  hold, 
of course;  in  that  case,  the  displacement of the  incoming  flow  by  the  separated 
bubble causes a change  in  the  outer  shock  structure,  and  thus  in  the  pressure 
distributions . 

w. 
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Figure,3.-   Sketch of s t r u c t u r e  of i n t e r a c t i o n   r e g i o n   f o r   c a s e  where 
incoming wave i s  obl ique .  

(a) Regu la r   r e f l ec t ion .  (b) Guderley Mach stem 
conf igu ra t ion .  

Figure 4 . -  Sketch  of s h o c k   s t r u c t u r e   i n   i n t e r m e d i a t e   i n v i s c i d   f l o w   r e g i o n s  
f o r  case where incoming wave is obl ique .  
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Figure 5 . -  Sketch  of  wall  pressure  distribution  corresponding to indicated 
shock wave structure  for case where incoming wave is oblique. 
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